293 research outputs found

    Sparse Predictive Structure of Deconvolved Functional Brain Networks

    Full text link
    The functional and structural representation of the brain as a complex network is marked by the fact that the comparison of noisy and intrinsically correlated high-dimensional structures between experimental conditions or groups shuns typical mass univariate methods. Furthermore most network estimation methods cannot distinguish between real and spurious correlation arising from the convolution due to nodes' interaction, which thus introduces additional noise in the data. We propose a machine learning pipeline aimed at identifying multivariate differences between brain networks associated to different experimental conditions. The pipeline (1) leverages the deconvolved individual contribution of each edge and (2) maps the task into a sparse classification problem in order to construct the associated "sparse deconvolved predictive network", i.e., a graph with the same nodes of those compared but whose edge weights are defined by their relevance for out of sample predictions in classification. We present an application of the proposed method by decoding the covert attention direction (left or right) based on the single-trial functional connectivity matrix extracted from high-frequency magnetoencephalography (MEG) data. Our results demonstrate how network deconvolution matched with sparse classification methods outperforms typical approaches for MEG decoding

    An introduction to spectral distances in networks (extended version)

    Full text link
    Many functions have been recently defined to assess the similarity among networks as tools for quantitative comparison. They stem from very different frameworks - and they are tuned for dealing with different situations. Here we show an overview of the spectral distances, highlighting their behavior in some basic cases of static and dynamic synthetic and real networks

    A unifying view for performance measures in multi-class prediction

    Get PDF
    In the last few years, many different performance measures have been introduced to overcome the weakness of the most natural metric, the Accuracy. Among them, Matthews Correlation Coefficient has recently gained popularity among researchers not only in machine learning but also in several application fields such as bioinformatics. Nonetheless, further novel functions are being proposed in literature. We show that Confusion Entropy, a recently introduced classifier performance measure for multi-class problems, has a strong (monotone) relation with the multi-class generalization of a classical metric, the Matthews Correlation Coefficient. Computational evidence in support of the claim is provided, together with an outline of the theoretical explanation

    Stability Indicators in Network Reconstruction

    Full text link
    The number of algorithms available to reconstruct a biological network from a dataset of high-throughput measurements is nowadays overwhelming, but evaluating their performance when the gold standard is unknown is a difficult task. Here we propose to use a few reconstruction stability tools as a quantitative solution to this problem. We introduce four indicators to quantitatively assess the stability of a reconstructed network in terms of variability with respect to data subsampling. In particular, we give a measure of the mutual distances among the set of networks generated by a collection of data subsets (and from the network generated on the whole dataset) and we rank nodes and edges according to their decreasing variability within the same set of networks. As a key ingredient, we employ a global/local network distance combined with a bootstrap procedure. We demonstrate the use of the indicators in a controlled situation on a toy dataset, and we show their application on a miRNA microarray dataset with paired tumoral and non-tumoral tissues extracted from a cohort of 241 hepatocellular carcinoma patients
    • …
    corecore